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Abstract

A number of theoretical models of technology adoption have been proposed that
imply that measured productivity growth may initially fall and then later rise after the
adoption of a new technology. This paper investigates whether or not this implication
is a feature of plant-level data from the Colombian manufacturing sector. We focus on
technology adoption embodied in new equipment. We find evidence that the effect of
a large equipment purchase is initially to reduce plant-level total factor productivity
growth.
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1 Introduction

A number of theoretical models of technology adoption have been proposed with the
following feature. After a production unit adopts a new technology, not all the ex-
pertise in the old technology transfers to the new technology and there is a period
of technology-specific learning. One implication of these theories is that measured
productivity growth may at first fall and then later rise after adopting a superior
technology.!

In this paper we provide micro-evidence on the question of whether productivity
growth first falls and later rises after the adoption of new technology embodied in
new equipment. We are motivated to address this question as micro-evidence on pro-
ductivity growth is key for issues related to aggregate productivity growth dynamics.
Consider an example. Greenwood (1996), Hornstein and Krusell (1996) and Greenwood
and Yorukoglu (1997) hypothesize that an increase in the pace of embodied technolog-
ical change is the cause of the aggregate productivity growth slowdown experienced by
the majority of the advanced economies since the 1970’s. A microeconomic mechanism
behind this hypothesis is that existing production units experience a temporary fall
in productivity growth after adopting new technology embodied in new equipment.?
At the aggregate level, productivity growth could temporarily slow down when an
increased fraction of production units make such investments. To evaluate such a hy-
pothesis at a quantitative level, one would need micro-evidence on productivity growth
dynamics after a production unit adopts new technology.

To address the question posed above, we identify the adoption of a new technology
at a particular production unit with the purchase of equipment. In particular, we will
say that those plants making equipment purchases that increase their real equipment
stocks by more than a critical fraction are adopting new technology embodied in new
equipment. A number of remarks are in order in regards to this assumption. First,
an equipment purchase is precisely the mechanism of technology adoption emphasized
in the literature. Second, the evidence in the papers by DeLong and Summers (1991,
1993) and Greenwood et al (1997) suggests that equipment investment may be a quan-
titatively important source of technology adoption.® Third, in plant-level data it is
the case that investment displays a lumpy pattern at the plant level with the bulk of

1Zeckhauser (1968), Parente (1994, 1998), Klenow (1998) and Yorukoglu (1998) provide theoretical models
with these features.

2We emphasize existing production units since in the data set that we explore the vast majority of
equipment investment occurs at existing plants rather than at brand-new plants. Gort and Boddy (1967, p.
398) report a similar finding for the US manufacturing sector.

3DeLong and Summers (1991, 1993) show that the growth rate of labor productivity across countries
is highly positively correlated with the fraction of equipment investment in GDP. Greenwood et al (1997)
argue that the bulk of postwar US growth in labor productivity can be attributed to technological change



plants making little or no purchases of equipment in a given year but large percentage
changes in the stock of equipment in other years.* Thus, our measure of technology
adoption is consistent with the notion that technology adoption embodied in equipment
occurs somewhat infrequently at the plant level. Lastly, we realize that our measure
of technology adoption is far from perfect. Our reaction to this is two-fold. First,
even if this measure is imperfect we will still be addressing an interesting question (i.e.
Does productivity growth fall after a large equipment purchase?). Second, we regard
it as a key issue for future research to focus on data sets that potentially allow one to
distinguish between equipment purchases reflecting technology adoption versus those
reflecting the acquisition of more capital of a technology known to the plant.

Our empirical strategy is straightforward. We focus on a data set of plants from the
Colombian manufacturing sector. For each plant, we calculate total factor productivity
(TFP) growth rates across time periods. We then regress the productivity growth of
a plant on the current and past values of our plant-level measure of technology adop-
tion, controlling for industry and/or time effects. We find evidence that productivity
growth falls when a plant makes a large equipment purchase. More precisely, we find
evidence that the effect of a large increase in a plant’s stock of equipment is to reduce
productivity growth by 3 to 9 percent in annual data. The fall in productivity growth
is 3 percent when the criteria for a large equipment investment is 25 percent of the
equipment stock, whereas it is 9 percent when the criteria is 100 percent of the equip-
ment stock. We find no evidence to support the proposition that a plant’s productivity
level eventually rises so as to surpass the productivity level existing before the large
equipment investment, after correcting for industry effects.

This paper is organized in four sections. Section 2 presents a number of background
facts about the data set, plant-level productivity growth and plant-level investment in
equipment. Section 3 presents our main results and then discusses interpretations of
these results from the perspective of a few different models. Section 4 concludes.

1.1 Related Literature

To the best of our knowledge, there is only scattered micro-evidence bearing on the
question that we address. We discuss work in three separate areas. First, there is
a literature consisting of case studies by Baloff (1966, 1970), Russell (1968) and oth-
ers in which plants from the US manufacturing sector have changed products or the
production process and in which the level of productivity initially falls and then later

embodied in new equipment.

4This is documented by Doms and Dunne (1998) and Cooper et al (1999) using US data and by Ospina
(1994) and Isgut (1996) using Colombian data. In section 2.3 of this paper we also provide evidence on this
point.



rises. These studies are part of a large literature on learning curves. The focus of
this literature has been to document the upside of the learning curve rather than any
potential downside after a switch in technology. This is true, for example, of the well-
known work of Bahk and Gort (1993) who estimate learning at new plants in the US
manufacturing sector.’

Second, there is a literature on adjustment costs and on firm-level investment. Parts
of these literatures have been surveyed by Chirinko (1993) and Dixit and Pindyck
(1994). While some of the models presented in these literatures are potentially consis-
tent with the findings of this paper, the empirical component of these literatures has
not answered the question that we pose. With this said, we are aware of some work
that is suggestive that firm investment in physical capital may be associated with falls
in productivity. In particular, Pakes and Griliches (1984) regress firm-level, accounting
profits on past investments. They find that accounting profit increases more strongly
to investment lagged several periods than to more recent investment.

Third, there is a literature on information technology and productivity growth, re-
viewed in part by Brynjolfsson and Hitt (1998) and Yorukoglu (1998). Much of this
literature focuses on the issue of whether there is an information technology produc-
tivity paradox. To the best of our knowledge, existing studies have not focused on
characterizing falls in productivity growth at the time of an investment in information
technology. However, with this said, some of this literature has found evidence for
learning by doing in the years after an investment in information technology.

2 Background Facts

2.1 Description of Data Set

The Colombian Statistics Department (DANE) conducts an annual survey of plants in
the Colombian manufacturing sector called the Encuesta Anual Manufacturera. DANE
surveys all firms listed in the Industry directory. These firms are then required to report
on all their plants with at least 10 employees. The data set covers the period 1974-1991.
In a typical year the data set has between 6,000 and 8,000 plants.

For each plant, data is collected on (1) employment and employee compensation, (2)
capital inputs, (3) intermediate input, (4) production and (5) various other information.

See Argote and Epple (1990), Jovanovic (1997) and Greenwood and Jovanovic (1998) for surveys of a
number of distinct literatures related to learning.

SFor a discussion of the methodology of the Encuesta Anual Manufacturera see DANE (1991). Research
based on versions of this data set, some with and some without plant identification numbers, has been
conducted by Roberts and Tybout (1996) and Isgut (1996) among others.



Employment is divided in six categories: proprietors, managerial, professional, blue
collar, technicians and apprentices. Information on capital inputs is divided into five
categories: buildings, machinery, office equipment, transport equipment and land. For
each capital input there is data on book value, purchases of new and used capital,
own production of capital, sales of capital, depreciation and revaluation. The data on
book values for a particular year are end-of-period values. An important feature of the
data set is that DANE assigns each plant a plant identification number. Thus, it is
possible to track individual plants over time. This means that a plant-specific measure
of productivity growth can be calculated.

Our analysis focuses on the collection of plants present in all years of the data set
that are not excluded by any of the following two criteria.” First, we exclude any plant
for which any of the data needed to calculate TFP growth rates are missing. This
data includes employment and employee compensation for each type of labor input,
book value of capital for the first year a plant appears in the data, investment data for
each type of capital input, intermediate input consumption and gross production. In
addition, we require strictly positive values for gross production, value added, capital
services, intermediate input, total employment, total compensation and the real value
of the stock of machines. Second, we exclude plants for which either the plant identi-
fication number is missing or repeated or for which the industry classification code is
missing. After applying the above exclusion criteria, there are a total of 2125 plants in
our data set each year and 31875 total observations on plants over the years 1976 — 90.
In any year of the data about half of these plants have less than 50 employees, whereas
about 5 percent of the plants have 500 or more employees.

2.2 Productivity Growth Facts

This section characterizes some features of the distribution of total factor productivity
(TFP) growth rates. The measurement of TFP growth rates is described in detail in
Appendix A.1- A.2. Figure 1 plots the distribution of TFP growth rates in each year
over the period 1976-90. Figure 1 shows that in each year (i) the median TFP growth
rate is close to zero and typically positive, (ii) the TFP growth rate distribution is
roughly symmetric with the vast majority of the plants having a TFP growth rate
between 40 and —40 percentage points and (iii) a small percentage of plants (typically
less than one percent) have a TFP growth rate either greater than 100 percent or
smaller than —100 percent. This last finding is represented in Figure 1 by plotting all

"We focus on the balanced panel in order to minimize on measurement error in the calculation of TFP
growth rates. We conjecture that plants that partially shutdown in a given year occur less frequently in the
balanced than in the unbalanced panel.



plants with a growth rate of less than —100 percent at —1 and all the plants with a
growth rate exceeding 100 percent at 1.3

We now comment on a number of other features of productivity growth rates in
Figure 1. First, the variability of TFP growth rates is substantially greater at the plant
level than what is observed in more highly aggregated data (e.g. industry or sectoral
data). For example, TFP growth rates are typically between 0 and 10 percent when
TFP growth rates are calculated for the Colombian manufacturing sector over the pe-
riod 1976-90 using aggregate measures of outputs, inputs and factor shares. Second,
although intuitively implausible, a straightforward application of Solow’s growth ac-
counting equation can produce TFP growth rates smaller than —100 percent. This can
occur when input growth rates are large and positive and when output growth rates
are not quite so large. We have examined a number of the cases of extreme negative
TFP growth rates and have found that in these cases output increased by a couple
of hundred percentage points whereas intermediate input increased at much greater
rates.” The statistical methods employed in subsequent sections of this paper have
been selected with these extreme observations in mind.

Insert Figure 1 Here

2.3 Equipment Investment Facts

We now document the distribution of plants by real equipment purchases as a fraction
of the real equipment stock. Our measure of equipment consists only of machinery
and thus does not include investment in office equipment, transport equipment or
structures. Investment in machinery is by far the largest component of investment in
physical capital. In particular, in all years machinery investment is between 70 and
80 percent of the combined value of the investment in machinery, office equipment,
transport equipment and structures.

Figure 2 examines the distribution of equipment investment in the balanced panel.
We find that the distribution of plants by equipment investment as a fraction of the
equipment stock is similar across years. In a given year about 30 percent of the plants
make no purchases of equipment and approximately another 30 percent make purchases
of less than 10 percent of the value of their equipment stock. Due to depreciation, these
plants will not expand their real equipment stocks. The last point that Figure 2 makes

8The maximum TFP growth rate is 60 (6000 percent) and the minimum is —287 (—28700 percent).

90utput is measured by gross production which measures both the value of finished goods produced as
well as changes in the value of goods in the process of production. Thus, the extreme negative TFP growth
rates are not due to not measuring goods in the process of production.



is that in any given year 5 to 15 percent of the plants make purchases that increase their
equipment stock by 50 percent or more and 2 to 6 percent of the plants make equipment
purchases that more than double their equipment stock.!? In later sections we will say
that plants making an equipment investment which increases the real equipment stock
by 25,50 or 100 percent are adopting new technology embodied in equipment.

Insert Figure 2 Here

In the introduction we claimed that continuing plants (i.e. already existing plants)
account for the bulk of the aggregate equipment investment in the Colombian manu-
facturing sector. Figure 3 provides some evidence on this point. Here we define a plant
in the data set in a specific year ¢ to be a continuing plant if it was in the data set in
year t — 1. Otherwise a plant in a specific year ¢ is considered to be an entering (i.e.
new) plant.'! Clearly, this definition may understate investment at continuing plants
as one could imagine defining a plant to be continuing if it were in the data set in
any previous year. Nevertheless, using this definition, Figure 3 shows that on average
over 90 percent of investment in machinery or in the sum of all types of reproducible
physical capital occurs at continuing plants.'?

Insert Figure 3 Here

3 Results

First, evidence is set out that bears on the question of whether the effect of a large
equipment investment is to decrease measured productivity growth. Second, several
theories of investment and productivity growth are presented to help interpret our
findings.

10See Cooper et al (1995) for similar but less dramatic results for their sample of large plants in the US
manufacturing sector. See Ospina (1997) and Isgut (1997) for a more detailed analysis of lumpy investment
in Colombia. The upper tail in Figure 2 is very long with a very small fraction of plants making equipment
investments that increase their equipment stocks by more than a factor of 100.

HUsing this definition, over ninety percent of the plants in any given year are continuing plants.

12In 1982 continuing plants accounted for 76 percent of all investment. The bulk of this drop is due to a
very large investment at one new plant in a capital-intensive industry. This does not appear to be due to
any obvious recording or reporting error.



3.1 Productivity Dynamics

Our approach to determining whether a large equipment investment acts to contempo-
raneously decrease productivity growth is to estimate the parameters in equation (1).
In equation (1) the variables yi, z{ and D;; are respectively the productivity growth
rate, the technology adoption decision of plant ¢ at time ¢ and an industry dummy vari-
able. The variable z} takes the value 1 if the investment xi of plant i at time ¢ exceeds
a critical fraction x of its equipment stock at time ¢ (i.e. 2} > x) and 0 otherwise. The
variable D;; takes the value 1 if plant 7 is in industry j and 0 otherwise.'? Equation
(1) states that productivity growth is the result of an industry effec‘g (32, @;Dij) plus
the effect of current and past technology adoption decisions (3°;, Bx2;_;.) plus an error
term (e}).

K
yi =Y oD+ > Brzty + e (1)
7 k=0

We estimate the parameters in equation (1) by minimizing the sum of absolute
errors (i.e. by least absolute deviation (LAD)). We note that when the error term
has fatter tails than the normal distribution the statistics and econometrics literatures
have stressed that there are non-linear estimators such as the LAD estimator that can
have substantially lower variance than the ordinary least squares estimator.'* Stated
differently, the LAD estimator is not as sensitive as the ordinary least squares estimator
to the presence of a small fraction of extreme observations on the dependent variable.
Previously, the discussion related to Figure 1 highlighted the fact that measured pro-
ductivity growth rates take on extreme values for a small fraction of the plants in our
sample. These extreme observations lead the distribution of the error term to differ
sharply from the normal distribution.

The benchmark results are listed in Table 1. The estimates of the parameter (3
in Table 1 describe the effect of a large equipment investment on current productivity
growth. The results indicate that the effect of a large equipment investment is to reduce
plant-level productivity growth by 3 to 9 percent. The fall in productivity growth is
larger for larger values of the critical fraction x of investment to the equipment stock

B30ur industry dummies are at the three-digit level. There are 29 such industries in the data set.

14See Koenker and Bassett (1978) and the large literatures on robust estimation and quantile regression.
Koenker and Bassett provide conditions under which quantile estimators, of which the LAD estimator is an
example, are asymptotically unbiased and normally distributed. Key conditions for this result are that errors
are independent and that the errors have positive density at the desired quantile. We use the S-Plus program
rq to calculate point estimates and standard errors. This program implements the procedures described in
Koenker and D’Orey (1987) and Koenker (1994).



used to define a large equipment investment. These point estimates are different from
zero at the one percent significance level.'

Insert Table 1 Here

Table 1 also reports the regression results for the effect of large investments in the
past on current productivity growth. The point estimates for the parameter 31 indicate
that the effect of a large equipment investment one year in the past is to decrease current
productivity growth by 2 to 5 percent. These estimates are all significantly different
from zero at the one percent level. The parameter estimates for lag lengths longer than
a year are smaller in absolute value than the one year lagged effect and are typically
negative. These estimates are often not significantly different from zero.

3.1.1 Two Robustness Checks

We focus on two questions: (1) Do the findings in Table 1 hold within specific in-
dustries? and (2) Are the findings in Table 1 sensitive to plausible magnitudes of
unmeasured quality improvements in equipment?

Industry Results

To address the first question, we examine the four largest industries in the balanced
panel as measured by the number of plants in that industry. For each of these industries
we estimate by least absolute deviations the effect of a large equipment investment on
productivity growth, controlling for year effects by means of time dummies, D;;. The
four largest industries by SIC code are Food (311), Apparel (322), Other Chemical (352)
and Metal Products (381). The findings listed in Table 2 are consistent with those in
Table 1 in that the point estimates for the effect of a large equipment investment on
current productivity growth is negative and in that the magnitudes of these effects are
generally similar to those listed in Table 1. The standard errors of the estimates in
Table 2 are larger than those in Table 1 due to the smaller number of observations.
We conclude that the results in Table 1 tend to hold within industries and thus the
process of pooling the data does not produce results that are not found in individual
industries.

Insert Table 2 Here

150rdinary least squares regressions on the data sets used in Table 1 also produce negative point estimates
of the contemporaneous effect of a large investment on productivity growth that are significantly different
from zero at the one percent level. The estimates of lagged effects are not significantly different from zero.
These point estimates for the contemporaneous effect are larger in absolute value than the comparable LAD
estimates but have substantially larger standard errors. These findings are robust to eliminating industry
dummies or to allowing industry dummies to be time varying.



Quality Improvement Results

To address the second question, we note that the investment price index for equipment
in Colombia makes no attempt to adjust for quality improvements. Substantial quality
improvements in equipment have been documented by Gordon (1990). To examine
the sensitivity to unmeasured quality improvements, the equipment capital for each
plant in the data set is adjusted for quality improvements as follows. Let ¢; index
the quality level of investment in period ¢ equipment. The old measure K; and the
new measure K; of equipment capital stocks are calculated from the old measure of
real investment [; using the perpetual inventory method: K;1 = K;(1 —6) + I; and
KtH = Kt(l —6) + I;q;. All other aspects of the TFP growth calculations are as
described in the Appendix.

The series for unmeasured quality improvements ¢; is based on work by Gordon
(1990, Table 12.2). He calculates that his quality-adjusted measure of the price of
producer’s durable equipment grows on average 3 percent slower over the period 1947-
83 than the standard US price series that, like the Colombian series, does not attempt
to adjust for quality improvements. Thus, we assume that ¢; grows at 3 percent per
year. Gordon’s work is based on US rather the Colombian data. For this reason, the
findings on this point should be viewed as being provisional and as providing potential
magnitudes of the effects of unmeasured quality improvements on our results.

The results in Table 3 show that the main findings from Table 1 are robust to
plausible magnitudes of unmeasured quality improvements in equipment. In particular,
the contemporaneous effect of a large equipment purchase is to decrease productivity
growth. These point estimates are significantly different from zero at the one percent
level and the magnitude of the fall in productivity growth is slightly larger in absolute
value than the comparable estimates in Table 1.

Insert Table 3 Here

3.2 Models of Investment and Productivity Growth

The results from the previous section call for a model which explains why equipment
investment at the plant level is usually small but is sometimes very large as well as why
plants with large equipment investments have lower productivity growth than plants
in the same industry making no investment. A simple model in which the output Y; of
any plant within an industry is given by a constant returns to scale production function
Y: = A4 F(X}), where X; is an input vector and A; is an industry-specific technology
level, cannot produce these results. In particular, in such a model productivity growth
of any plant is given by the industry-specific growth in technology AA/A. Thus, this
model predicts that the regression coefficient By in Table 1 is precisely equal to 0

10



since plants making large equipment investments have the same productivity growth
as plants not making such investments.

Three specific models are described below which explain why investment is lumpy
and why productivity growth is lower at plants making large equipment investments.
Before presenting these models, we describe two measurement error stories that we
do not think are driving the results in Table 1. First, one possibility is that we have
mismeasured the capital input since the investment price indices make no attempt to
account for quality improvement in equipment that is due to technical change embodied
in new equipment. Previously, Table 3 examined the sensitivity of the benchmark
results for plausible magnitudes of unmeasured quality improvements. The findings
were that the effect of a large equipment investment on current productivity growth
continue to be negative. Second, another possibility is that there are in reality several
industries within our 4-digit industry classifications. In this case output growth will be
mismeasured when true output prices have heterogeneous growth rates within a 4-digit
industry. Following the line of argument in Appendix A.3, this type of measurement
error is likely to bias the parameter estimates of 5y in Table 1 upward not downward.
Thus, this type of measurement error seems likely to further strengthen the case against
the simple model described above.

Technology Adoption

Zeckhauser (1968) and Parente (1994, 1998) posit that an immortal craftsman period-
ically adopts superior technology. A version of their model is presented below, where
(Y, X, A, Z) denote output, an input vector, a firm-specific technology level and firm-
specific expertise with the current technology. The function F' is constant returns to
scale. When the craftsman adopts a superior technology (higher A) two things happen:
first there is an immediate fall in expertise Z as not all the previous expertise transfers
to the new technology and second Z later increases over time due to learning as long
as the craftsman sticks to technology A. This story can easily be modified so that
adopting a technology involves a purchase of capital specific to that technology.

Y, = A ZF(X))

Machine Replacement

Recently the machine replacement problem (Cooley et al 1997 and Cooper et al 1999)
has been advanced as an explanation of plant-level investment patterns and of lumpy
investment in particular. A version of the model presented by Cooper et al (1999),
which emphasizes equipment investment at existing plants, is presented below. Here
(Y, X, A, Z) denote output, an input vector, an industry-specific technology shock and

11



a plant-specific adjustment cost related to machine replacement. The function F' is
constant returns to scale. In periods where a machine is replaced Z; < 1, whereas in
periods without a machine replacement Z; = 1.

Y, = A ZF(X)

Stochastic Depreciation

Imagine that the machinery at a plant is subject to stochastic (i.e. “light bulb”)
depreciation.'® For simplicity, suppose that all plants have precisely one machine
which is essential for production. The machine works perfectly up to the point where
it dies without the possibility of repair. The time of death of a machine is random.
The production function for a plant is given below, where (Y, X, A) denote output, an
input vector and an industry-specific technology shock. The function F' is constant
returns to scale. This model is the same as the machine-replacement model except
that there is stochastic depreciation and there is no adjustment cost associated with
machine replacement.

Y, = A F(X)

3.2.1 Productivity Growth Implications

What are the total factor productivity growth implications of these three models?
First, focus on the technology-adoption model. Following the Solow (1957) growth
accounting calculation described in Appendix A.1, total factor productivity growth for
a plant is (AAZ + AAZ)/AZ. Thus, total factor productivity growth (i) could fall
after a switch in technology when the fall in expertise (AZ < 0) is sufficiently great to
offset the technology improvement (AA > 0) and (ii) rises thereafter due to learning
(AZ > 0) as long as the technology remains the same. In terms of the results in Table
1, the technology-adoption model is consistent with Gy < 0 and Gy, ..., Bx > 0.

In the machine-replacement model, total factor productivity growth for a plant is
also given by (AAZ+ AAZ)/AZ. Thus, productivity growth within an industry for all
plants making no machine replacements in two consecutive periods equals the amount
of technological change AA/A at the industry level. Plants replacing machines have
lower productivity growth than plants not replacing machines due to the proportional
adjustment cost AZ < 0. One period after replacement, productivity growth is higher
than for plants making no replacement in the last two periods as AZ > 0. In terms of

16 A referee suggested that a discussion of this model might be helpful.

12



the results of Table 1, the machine-replacement model implies that Gy < 0, 61 > 0 and
Bo, ..., Bk = 0, when a model period corresponds to a year.

In the stochastic-depreciation model, absent any errors in measuring outputs and
inputs, total factor productivity growth is AA/A for all plants in a given industry.
In terms of the results of Table 1, this model implies that g = 31 = ... = Bx = 0
since plants with and without large equipment investments have the same productiv-
ity growth after accounting for industry effects. Thus, with no measurement error
this model is not consistent with the evidence presented. This conclusion needs to be
reconsidered when one calculates capital input with the procedures described in Ap-
pendix A.1-A.2. The calculation of the capital input assumes that capital depreciates
at a constant rate. This was made as there is no satisfactory information on true
depreciation in the data set. What are the implications of the stochastic depreciation
model? The model has the feature that capital input is always constant and thus the
growth of capital input is zero. The constant depreciation assumption then implies
that measured growth in the capital input is overestimated when a machine is replaced
and underestimated by exactly the rate of depreciation at all other times. If this were
the only consequence of this measurement error problem, then productivity growth
would be underestimated for a particular plant when machines are replaced and over-
estimated by the depreciation rate times the cost share of the capital input otherwise.
Under this assumption, the model implies that in a regression analysis Gy < 0 and
61=..=0rg=0.

The analysis in the previous paragraph is not quite correct. The problem is that,
given the procedures in the Appendix which impute cost shares using the data on
capital stocks, errors in measuring the capital stock lead to errors in measuring the
share of each factor input in total cost of production. In particular, the measured cost
shares for a particular plant will have errors that depend on a plant’s history of machine
replacement. A consequence of this is that it is not a simple matter to determine what
restrictions the stochastic-depreciation model offers on the signs of the parameters in
Table 1.

3.2.2 Discussion

The three models of plant-level productivity growth just reviewed all seem capable of
producing falls in productivity growth associated with large equipment investments.
Thus, to separate these models using the findings in Tables 1-3 will involve using infor-
mation on the response of current productivity growth to large equipment investments
occurring in the past. At face value, the results in Tables 1-3 all state that a large
investment one year in the past reduces current productivity growth (i.e. (1 < 0).
Thus, one might be tempted to conclude that on this basis the evidence presented is

13



strongly against both the technology-adoption and machine-replacement models. We
prefer to stress a different aspect of the evidence in Tables 1-3.17 In particular, the ev-
idence in Tables 1-3 provide no support for the proposition that a plant’s productivity
level eventually rises so as to equal or surpass the productivity level existing before the
large equipment investment, after correcting for industry effects. Productivity dynam-
ics with this feature are what one would expect to find if either the technology-adoption
or machine-replacement model were producing the data.

4 Conclusion

The main findings of the paper are as follows: (1) Our best estimate is that the
contemporaneous effect of a large equipment investment is to decrease a plant’s total
factor productivity growth by 3 to 9 percent in annual data. This decrease is larger
for larger critical values for what constitutes a large equipment investment. (2) This
finding holds within industries and is robust to plausible amounts of unmeasured quality
improvements in equipment. (3) The bulk of investment in either equipment or all
reproducible physical capital occurs at existing plants rather than at new plants.

We attach the following significance to these findings. First, the findings are in-
consistent with models where all plants within an industry are affected by a common
disembodied technology shock and/or by technological improvements embodied in new
equipment. Second, if large equipment investments coincide with the adoption of new
technology embodied in new equipment, then the findings imply that the adoption of
new technology contemporaneously reduces total factor productivity growth. Third,
we believe that the finding that the bulk of equipment investment occurs at existing
plants has implications for future work. This finding suggests that the literature which
attempts to quantify the implications of microeconomic models of equipment invest-

17One reason for not emphasizing the sign of the parameter estimate for 3; has to do with how the growth
rate of capital services is measured. Capital services, unlike output and all other inputs, cannot be calculated
directly from expenditure data. Instead, capital services are imputed from data on capital stocks under the
assumption that capital services for a particular type of capital are proportional to the capital stock in use in
the period. Our best measure of capital in use is the average of beginning and end-of-period capital stocks.
Thus, when there is a large, one-time increase in the capital stock in year ¢, our procedure implies that there
is a large growth rate of capital services both in year ¢t and ¢ 4+ 1. This procedure seems appropriate when
the increase occurs in the middle of the year, but leads to obvious bias when the increase occurs early or
late in the year. We conjecture that this measurement problem may be behind the negative point estimates
for (4, in Tables 1-3. This seems plausible since we find that point estimates for 31 are about .01 if one were
to take the extreme position that the end-of-period capital stock is the most appropriate measure of capital
in use. Such a measure also implies that point estimates for Gy are even more negative than those reported
in Table 1.
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ment for aggregate productivity growth issues should concentrate on models where
equipment investment occurs not only at new plants but also at existing plants.

We mention two directions to explore in future work. First, what is the effect on
productivity growth of equipment purchases that reflect technology adoption versus
those that merely reflect the acquisition of more capital of a technology known to the
plant? This is a key question. To address this question a data set that allows such a
distinction to be measured is needed. Doms et al (1997) describe a data set that is
potentially promising in this regard. Second, it would be useful to see if the findings
presented here are confirmed in data sets for other countries and time periods.
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A Appendix

A.1 Measuring Productivity Growth Rates

Following Solow (1957), we assume that at each point in time a plant operates a
constant returns to scale production function Y; = F(X;,t) and that plants behave
competitively. In this formulation, plants produce Y; units of output using a vector of
inputs X;. Under the assumptions stated above, Solow derived the following growth
accounting equation for calculating what is now called total factor productivity growth
F /F.'® The equation states that at time ¢ the rate of shift of the production function
F/F at the current input vector equals output growth less a weighted average of
the growth rates of the factor inputs. Weights are output elasticities (i.e. w™ =
F,X"™/F). Solow calculates these weights using factor shares of output, whereas we
use cost shares. The cost share approach requires only competition in input markets
rather than competition in input and output markets (see Hall (1991)).

PIF =YY, = Y wp X/ XD
n

To calculate productivity growth at the plant level we first approximate growth
rates with yearly growth rates as indicated below:

FIF=AY,/Y 1 =Y wPAX] /X!,

Next, we describe measurement. We measure Y by the value of nominal gross pro-
duction measured in the data set divided by the industry-specific output price index.
We measure three separate factor inputs: labor, capital and intermediate input. We
measure the real value of intermediate input by the nominal value of intermediate input
measured in the data set divided by the price index for intermediate input. As we do
not have a price series for intermediate input we use the GDP deflator for this purpose.

Our measure of labor input L; at a particular plant at time ¢ is the weighted sum
of the number of employees L] of type j at that plant at time ¢: L; = 3>, w/L{. The
weights are chosen so as to measure the efficiency of labor input type j at the particular
plant at time ¢. Thus, w] is the total compensation per type j worker at the particular
plant at time ¢ divided by the average compensation per type 1 worker in the economy
at time t. We choose blue collar workers to be type 1 workers. We note that this

8 A dot over a variable denotes a time derivative.

9We deflate with four-digit output deflators. We have 51 distinct four-digit deflators. In some years four
of these deflators have a zero price change. As we regard this as suspect, for these industries we set the price
change equal to that of the GDP deflator in years where no price change is reported.
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way of measuring labor input allows for plant-specific variation in the weight of each
worker type while fixing the weight of type 1 workers in the entire economy at value
of 1 each year. This allows for differences in labor efficiency of different worker types
across plants arising from (i) differences in hours worked or (ii) differences in human
capital.

We measure total capital services KS; at a particular plant at time ¢ as the sum of
the capital services of each type of capital: KS; =, .5[K/+ K], ,](6;+7r). This is the
standard way that capital services is constructed from an underlying measure of the
real capital stock of each capital type K} (see Griliches and Jorgenson (1968)). Note
that we use the average of the real value of the capital stock at the beginning of period
t and period ¢t + 1 in order to calculate the measure of the capital stock most relevant
for computing capital services during period . We can distinguish five types of capital
in our data set: structures, equipment, office equipment, transportation equipment
and land. We indicate how we calculate K7 in Appendix A.2. We set the interest rate
at r = .05 and the depreciation rates (6;) of structures, machinery, office equipment,
transport equipment and land at (4.61,12.56,13.32,18.92,0). With the exception of
land which we have assumed does not depreciate, these estimates come from the work
of Pombo (1998, Table 3.1) for the Colombian manufacturing sector.

We measure the weights w}® as the average share of input n in total costs of a
particular plant in period t — 1 and t. As we observe the nominal cost of all inputs
except capital services, some assumption needs to be made to calculate cost shares.
We construct a common nominal price of capital services each year so that at this price
the nominal value of gross production in a given year for all plants equals the nominal
value of all input costs for all plants. This amounts to assuming that there are no
aggregate profits each year for the entire manufacturing sector.

Following the procedures described above, we calculate productivity growth rates
for each year starting from 1976. The first year is 1976 because the measure of the
capital stock, described in Appendix A.2, can first be calculated at the beginning of
1975. This is due to the fact that the 1974 data on book value of capital are end-of-
period values.

A.2 Measuring the Real Value of Capital

Our procedure for creating a series for each plant measuring the real value of type j
capital stock at the beginning of the period is summarized in two equations:

1. First Year in Sample: K7 = BV} /p} ‘ ‘ -
2. Subsequent Years: K7, = K{(1—6;) + (PN} + PU} + 0P} — 5})/p]

K, - real beginning of period value of capital
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BV, - beginning of period book value

PN, - purchases of new capital

PU,; - purchases of used capital

OP; - own production of capital

S; - sales of capital

0; - depreciation rate of type j capital

pz - Investment price deflator of type j capital

We have price deflators for structures, equipment (machines and office equipment)
and transport equipment. The GDP deflator is used to deflate land. Depreciation rates
are set at the values calculated by Pombo (1998).

A.3 Omitted Variable Bias- An Example

We show how mismeasured output prices can bias upwards the estimated effect of a
large investment on productivity growth.

Step 1:
Let A/A and A / A denote true and measured productivity growth when the growth

rate of gross production is measured correctly ¥ /Y and incorrectly Y / Y. From Ap-
pendix A.1 we have the following;:

AAZY )Y =3 WK X
AJA=Y )V - Y W Xm /X"

When (i) (p,p) denote different price indices, (ii) GP denotes nominal gross pro-
duction and (iii) Y = GP/p and Y = GP/p, then these measures are related as in the

first equation below. Now let y = fl/fl, let A/A be a linear function of z as posited
in section 3 of the paper (i.e. A/A = a+ (z) and let w = (p/p — p/p). The second
equation below then follows from the first.

AJA=AJA+ (3/p - /D)

y=a+pz+yw
Step 2:

Let productivity growth ¢, technology adoption (i.e. a large equipment investment)
z{ and an omitted variable w{ be related as follows: y! = a+ Bz} + yw! + €. The least
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squares estimate of 3 when w} is omitted is given by (3; below (see Greene 1993, p.
247):

B1 = Cou(y,2)/Var(z) =+ ~yCov(w, z)/Var(z)

Clearly, the estimate is biased upwards when v > 0 and Cov(w, z) > 0. Since v = 1
from step 1, the positive bias rests on the covariance between w! and z{. A positive
covariance seems a plausible conjecture given the notion that big investments covary
more strongly with true growth in industry price than with growth in a 4-digit measure
of output prices.
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Table 1: Benchmark Results
i K i i
Yp = Zj o Dij + 3 5o Przi_y, + €

Independent Number of
Variable Bo 051 B 03 o Observations
2t = Ligi> o5} -.037* 31875
(.002)
-.034*  -.028* 31875
(.002) (.003)
-.034*%  -.028*%  -.004 29750
(.002) (.002) (.002)
-.037*%  -.029% -.008*% -.001 27625
(.002) (.003) (.003) (.002)
-.037%  -.029* -.009* -.003 .004 25500
(.003) (.003) (.003) (.003) (.002)
2y = Ligis> 50} -.054* 31875
(.003)
-.052%  -.041%* 31875
(.004) (.003)
-.053*  -.039*  -.006 29750
(.003) (.003) (.003)
-.056% -.041* -.010* -.005 27625
(.003) (.003) (.003) (.003)
-.056% -.041* -.013* -.006 .001 25500
(.004) (.004) (.003) (.003) (.003)
2t = Ligiz1.0} -.087* 31875
(.005)
-.086*% -.057* 31875
(.006) (.005)
-.086*% -.054* -.012%* 29750
(.006) (.006) (.004)
-.091* -.056* -.016% -.005 27625
(.006) (.007) (.004) (.004)
-.095%  -.055*% -.020* -.008 .000 25500

(.006) (.006) (.005) (.005) (.004)
standard errors are indicated in parenthesis
* indicates that coefficient is significantly different from 0 at the 1 percent level
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Table 2: Industry Results
i K i i
Ye =2 D+ 3o Bezyp T &

Independent Number of
Variable Industry 5o 051 B2 03 oA Observations
2t = Lipis 05 311 -.033*  -014 -.005 -.009 .003 4020
(.005) (.005) (.005) (.005) (.005)
322 -.031%  -.007 -.004 .003 .001 1764
(.008) (.007) (.006) (.008) (.008)
352 -.010 -.021 -.014 008  -.001 1860
(.010) (.015) (.011) (.013) (.010)
381 -.026% -012 -.011 -.003 -.007 2208
(.008) (.007) (.009) (.009) (.007)
2t = Lipi> 50y 311 -.042* -.025% -.008 -.007 .006 4020
(.013) (.007) (.009) (.006) (.006)
322 -.047%  -027  -.009 -.001 -.003 1764
(.013) (.015) (.009) (.007) (.008)
352 -.033%  -.021  -.009 .007 .001 1860
(.012) (.011) (.013) (.014) (.010)
381 -.046* -.035% -.008 -.013 .002 2208
(.009) (.010) (.010) (.010) (.009)
2t = Ligpi>1.0} 311 -.075%  -.027 -.008 -.007 .005 4020
(.012) (.013) (.008) (.006) (.008)
322 -.071*  -026 -.024 -.002 .009 1764
(.020) (.016) (.011) (.016) (.011)
352 -.036  -.050 -.015 .007 .002 1860
(.033) (.021) (.021) (.015) (.019)
381 -.076  -.043* .001  -.013 -.019 2208

(.034) (.013) (.012) (.013) (.015)

standard errors are indicated in parenthesis
* indicates that coefficient is significantly different from 0 at the 1 percent level
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Table 3: Quality Improvement Results
. % . .
Ye =225 05Dij + 300 Brzi_y €

Independent Number of
Variable Bo 051 B 03 o Observations
2t = Liai> 05 -.040%* 31875
(.002)
-.038%  -.024* 31875
(.003) (.002)
-.037%  -.023*  -.003 29750
(.002) (.002) (.005)
-.039*%  -.024* -.005 -.001 27625
(.002) (.003) (.003) (.002)
-.038% -.023* -.006 -.002 .005 25500
(.002) (.002) (.003) (.002) (.002)
2y = Ligi> 50} -.060* 31875
(.004)
-.057*%  -.035* 31875
(.004) (.003)
-.057*%  -.032*  -.004 29750
(.004) (.003) (.003)
-.060* -.031* -.007 -.004 27625
(.003) (.004) (.003) (.003)
-.061*% -.032* -.009* -.004 .003 25500
(.003) (.003) (.003) (.003) (.003)
2t = Ligiz1.0} -.093* 31875
(.006)
-.093*%  -.035* 31875
(.005) (.005)
-.092%  -.045% -.012* 29750
(.006) (.006) (.004)
-.095% -.046*% -.013* -.003 27625
(.006) (.006) (.004) (.004)
-.097*%  -.044* -.015* -.005 .001 25500

(.007) (.007) (.004) (.005) (.005)
standard errors are indicated in parenthesis
* indicates that coefficient is significantly different from 0 at the 1 percent level
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